ПАПIBIA UПIVERSITY

OF SCIEחCE ACD TECHחOLOGY
FACULTY NAME:
NATURAL RESOURCES AND SPATIAL SCIENCES

DEPARTMENT NAME:
AGRICULTURE AND NATURAL RESOURCES SCIENCES

QUALIFICATION: BACHELOR OF AGRICULTURE	
QUALIFICATION CODE: O7BAGR	LEVEL: 5
COURSE: Introduction to Chemistry	COURSE CODE: ICA511S
DATE: July 2019	SESSION:
DURATION: 3 Hours	MARKS: 100

SUPPLEMENTARY / SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Ms. Emma Elmary GAMROS
MODERATOR:	Mrs. Lucia Tuyeni-Kelao KAFIDI

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

1. Examination paper.
2. Examination script.
3. Calculator

- There are 20 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.

1. Which of the following is a measurement of mass in the metric system?
A. celsius
B. centimeter
C. milliliter
D. kilogram
E. meter
2. Which of the following numbers contains the designated CORRECT number of significant figures?
A. $0.04300 \quad 5$ significant figures
B. 0.003022 significant figures
C. 3.06504 significant figures
D. 1560003 significant figures
E. 1.042 significant figures
3. Convert 0.00010 to standard scientific notation with correct number of significant figures.
A. 1×10^{-3}
B. 1.0×10^{-3}
C. 1×10^{-4}
D. 1.0×10^{-4}
E. 10×10^{-5}
4. The temperature of liquid nitrogen is $-196^{\circ} \mathrm{C}$. What is the corresponding reading on the Kelvin scale?
A. 146 K
B. 77 K
C. -127 K
D. -91 K
E. 48 K
5. The molecular formula for acetylene is $\mathrm{C}_{2} \mathrm{H}_{2}$. The molecular formula for benzene is $\mathrm{C}_{6} \mathrm{H}_{6}$. The empirical formula for both is
A. CH
B. $\mathrm{C}_{2} \mathrm{H}_{2}$
C. $\mathrm{C}_{6} \mathrm{H}_{6}$
D. $(\mathrm{CH})_{2}$
E. Insufficient Information
6. What mass of NaCl (Molar mass $=58.45 \mathrm{~g} / \mathrm{mol}$) can be produced by the reaction of 0.75 mol Cl2 ?
A. 0.75 g
B. 1.5 g
C. 44 g
D. 88 g
E. 132 g
7. What is the maximum number of moles AlCl_{3} that can be produced from 5.0 mol Al and $6.0 \mathrm{~mol} \mathrm{Cl}_{2}$?
A. 2.0 mol
B. 4.0 mol
C. 5.0 mol
D. 6.0 mol
E. 8.0 mol
8. A certain element has 2 isotopes, one having a mass of 84.9118 amu and $\%$ abundance of 72.15 and the other having a mass of 86.9092 amu and $\%$ abundance of 27.85 . The average atomic weight of this element is
A. 85.9105 amu
B. 86.0025 amu
C. 85.4681 amu
D. 85.7253 amu
E. Insufficient Information
9. What is the electron configuration for the most stable ion of the element Sulfur, ${ }_{16} \mathrm{~S}$.
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 d^{6}$
E. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
10. Which of the following is incorrect?
A. $1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$
B. $1 \mathrm{~m}=100 \mathrm{~cm}$
C. $1 \mathrm{ml}=1 \mathrm{~cm}^{3}$
D. $1 \mathrm{~L}=1 \mathrm{~m}^{3}$
E. $1 \mathrm{ml}=10^{-6} \mathrm{~m}^{3}$
11. Use the following information to identify the atom or ion: 8 protons, 8 neutrons, and 10 electrons.
A. S^{2+}
B. O^{2-}
C. O^{2+}
D. S^{2-}
E. Ne
12. The element with atomic number 32 describes a \qquad .
A. Metal
B. Non-metal
C. Metalloid
D. Halogen
E. Noble gas
13. Member of a common horizontal row(period) of the Periodic Table should have the same \qquad ?
A. Atomic number
B. Atomic mass
C. Number of energy shells
D. Electrons in the outer shell
E. Valence
14. What is the mass of 3.00 moles of Aluminum
A. 80.9 g
B. $\quad 12.84 \mathrm{~g}$
C. 8.99 g
D. 12.4 g
E. 8.99 g
15. The number of significant figures in 0.010 is
A. 4
B. 3
C. 2
D. 1
E. Cannot be specified
16. When you heat a sample of gas, what happens to the particles that make up the gas?
A. The particles gain kinetic energy
B. The particles break apart
C. The particles get smaller
D. The particles move slowly
E. The particles become more dense
17. Which element is a metal?
A. Se (atomic number $=34$)
B. Co (atomic number $=27$)
C. $\quad C$ (atomic number $=6$)
D. Br (atomic number $=35$)
E. None of the above
18. What is the volume of 1.5 M NaOH needed to provide 0.75 mol of NaOH ?
A. 500 L
B. 5.0 L
C. 500 ml
D. 0.75 L
19. Which element has the noble gas configuration $[K r] 5 s^{2} 4 d^{2}$
A. Se
B. Sr
C. Zr
D. Mo
E. Mn
20. Any sample of matter has mass and takes up space. The main reason for this is because:
A. All matter is heavy
B. Matter can be a gas
C. Matter is made up of tiny particles that have mass and takes up space
D. The Earth is made up of matter
E. All the above

- There are SEVEN questions in this section. Answer all Questions.
- Show clearly, where necessary, how you arrive at the answer as the working will carry marks too.

QUESTION 1

1.1 What is the maximum number of electrons that can be contained within the region (shell, subshell, orbital) specified by the following quantum numbers?

$$
\begin{equation*}
\text { 1.1.1 } n=3 \tag{1}
\end{equation*}
$$

1.1.2 $n=4 ; l=2$
1.1.3 $n=2 ; 1=0 ; m_{1}=0$
1.2 Give the n and I values for the following orbitals
1.2.1 1 s
[1]
1.2.2 3s
[1]
1.2.3 $2 p$
1.2.4 4d
1.2.5 $5 f$
$1.2 .6 \quad 6 \mathrm{~g}$

QUESTION 2

Evaluate each of the following and round off the answer to the correct number of significant figures.

$$
\begin{align*}
& 2.1235 .05+19.6+2.1 \\
& 2.258 .925-18.2 \\
& 2.3 \frac{4.311}{0.07} \tag{2}\\
& 2.4 \frac{(2.54 \times 0.0028)}{(0.0105 \times 0.060)} \tag{2}
\end{align*}
$$

[2]

QUESTION 3

[5]
Element Q has only 2 naturally occurring isotopes: ${ }^{94} \mathrm{Q}$ with an abundance of 76.62% and ${ }^{97} \mathrm{Q}$. The mass of ${ }^{94} \mathrm{Q}$ is 7.883 times greater than that of ${ }^{12} \mathrm{C}$, while ${ }^{97} \mathrm{Q}$ is 8.082 times greater than that of ${ }^{12} \mathrm{C}$. What is the atomic weight of element Q ? (Reminder: the mass of ${ }^{12} \mathrm{C}$ is exactly 12).

QUESTION 4

The fizz produced when Alka-Seltzer tablet is dissolved in water is due to the reaction between sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ and citric acid $\left(\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)$:
$3 \mathrm{NaHCO}_{3(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7 \text { (aq) }} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7 \text { (aq) }}$
In a certain experiment 1.00 g of sodium bicarbonate and 1.00 g of citric acid are allowed to react.
4.1 Which is the limiting reactant?
4.2 How many grams of carbon dioxide form?
4.3 How many grams of excess reactant remain after the limiting reactant is completely consumed?

QUESTION 5

[5]
The element ${ }^{29} \mathrm{Cu}$, which has an average atomic mass of 63.546 amu , consists of two isotopes: Isotope A with an isotopic mass of 62.930 amu , and isotope B with an isotopic mass of 64.928 amu. The relative abundance of the heavier isotope B is?

QUESTION 6

6.1 Draw the structure of:

6.1.1 3,3-dimethylpentane

6.1.2 3-ethyl-2-methyhexane
6.1.3 3-chloropropyne
6.2 Name the following structures:
6.2.1
[2]

6.2.2
[2]

6.2.3

QUESTION 7

7.1 Name the following ionic compounds:
7.1.1 FePO_{4}
7.1.2 $\quad \mathrm{K}_{2} \mathrm{~S}$
7.1.3 NaHCO_{3}
7.1.4 $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$
7.1.5 AlMnO_{4}
7.2 Give the formulas for the following ionic compounds:
7.2.1 Sodium Sulphate
7.2.2 Magnesium phosphate
7.2.3 Sodium chloride
7.2.4 Silver carbonate
7.2.5 Dihydrogen monoxide

Total Marks: 100

USEFUL CONSTANTS:

Gas constant, $\mathrm{R}=8.3145 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760$ torr
Avogadro's Number, NA $=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$
Speed of light, $c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$
PERIODIC TABLE OF THE ELEMENTS

57 La 138.906	$\begin{array}{\|c\|} \hline 58 \\ \mathbf{C e} \\ 140.12 \\ \hline \end{array}$	$\left[\begin{array}{c} 59 \\ \mathbf{P r} \\ 140.908 \end{array}\right]$	$\begin{gathered} 60 \\ \text { Nd } \\ 144.24 \\ \hline \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ (145) \end{gathered}$	$\begin{gathered} 62 \\ \mathrm{Sm} \\ 150.36 \end{gathered}$	$\begin{gathered} \text { Eu } \\ 151.96 \\ \hline \end{gathered}$	$\begin{gathered} \text { Gd } \\ 157.25 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 65 \\ \mathbf{T b} \\ 158.925 \\ \hline \end{array}$	$\begin{gathered} 66 \\ \mathbf{D y} \\ 162.50 \end{gathered}$	$\begin{gathered} 67 \\ \mathbf{H o} \\ 161.930 \end{gathered}$	$\left\lvert\, \begin{gathered} 68 \\ \mathbf{E r} \\ \mathbf{1 6 7 . 2 6} \end{gathered}\right.$	$\left.\begin{gathered} 69 \\ \mathbf{T m} \\ 166.934 \end{gathered} \right\rvert\,$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es		M	No
227.028	Th				(244)	(243)	(247)	(24)	(251)	(252)	(257)	(258)	

Lanthanides:
Actinides:

